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1 Introduction

This is a summary of all the work our group has done through the last several months in our independent
study on Special and General Relativity.

2 Center of Mass and Lab Frame

2.1 Boosting from Lab Frame to CoM

Suppose we have a system whose four-momentum is

[
Elab/c

P⃗

]
and we would like to boost this to a frame

where there is no spatial component

[
ECoM/c

0

]
. As the magnitude of the four-momentum is invariant under

a Lorentz boost,

−(Elab/c)
2 + P⃗ · P⃗ = −(ECoM/c)2 (1)

=⇒ E2
CoM = E2

lab − c2P⃗ · P⃗ (2)

2.2 Why scattering between two moving particles is more energy efficient?

Suppose, in lab frame, particle A has energy EALF = γAMAc
2. If one wants to increase its energy until

the total CoM energy has increased by a factor of λ for particle production through scattering with another
particle B, let’s find the new lab frame energy, EN . First off, we can see that for all particles in this process:

γi =
Ei

Mic2
=⇒ v2i = c2 − c2

γ2
i

= c2 − Mic
4

Ei
(3)

=⇒ P⃗i · P⃗i =
E2

ALF

c4
v⃗i · v⃗i (4)

We can calculate the system CoM energy from its lab frame energy via:

E2
CoM = (EALF +MBc

2)2 − c2P⃗ALF · P⃗ALF (5)

= (EALF +MBc
2)2 − E2

ALF

c2
v2A (6)

We want a new CoM energy, whose lab frame energy EN can be calculated similarly from above, to be the
same as λ times the old lab frame energy,

λ2

(
(EALF +MBc

2)2 − E2
ALF

c2
v2A

)
= (EN +MBc

2)2 − E2
N

c2
v2N (7)

We can rewrite the velocities in terms of their corresponding energies using the relation above to get an
equation with just EAFL, EN , the masses, and c. We can then solve for EN in terms of everything else (note
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that after doing this the square energies from the parenthesis cancel out with that from the four-momentum
square so we get a nice linear equation) :

EN =
−c2M2

B + EALFMAλ
2 + 2EALFMBλ

2 + c2MBλ
2

MA + 2MB
(8)

Suppose we want to double the energy during a scattering process with two identical particles, this
simplifies to:

EN =
12EALFMA + 3c2M2

A

3M2
A

= 4EALF + c2M2
A ≈ 4EALF (9)

3 Compton Scattering

Compton scattering is a phenomenon in which a photon collides with a stationary electron and transfers some
of its energy to the electron. To derive the formula for the Compton shift, we use the principles of special
relativity. In relativity, momentum is described by four-vectors, which include both the spatial components
of momentum and the temporal component of energy.

Four-momentum vector of the electron before collision:

Pµ
e =


Mc
0
0
0

 (10)

Four-momentum vector of the proton before collision:

Pµ
p =


E/c
E/c
0
0

 (11)

Four-momentum vector of the electron after collision:

Pµ
e
′ =


γmc

γMv cos θe
γMv sin θe

0

 (12)

Four-momentum vector of the proton after collision:

Pµ
p
′ =


E′/c

(E′/c) cos θp
(−E′/c) sin θp

0

 (13)

Then using the conservation of momentum in relativity, we can relate the four-momentum vectors of the
particles before and after the collision. In particular, the sum of the four-momentum vectors of the particles
must be conserved in any inertial frame of reference.

Pµ
e + Pµ

p = Pµ′

e + Pµ′

p (14)

Substituting the four-momentum vectors into the conservation equation, we get:
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
Mc
0
0
0

+


E/c
E/c
0
0

 =


γmc

γMv cos θe
γMv sin θe

0

+


E′/c

E′/c cos θp
−E′/c sin θp

0

 (15)

Equating the components of the four-momentum vectors, we obtain:

E/c+Mc = γmc+ E′/c (16)

E/c = γMv cos θe + (E′/c) cos θp (17)

0 = γMv sin θe − (E′/c) sin θp (18)

From the first equation, we can get the expression for γ:

γ =
E′ +Mc2 − E

mc
(19)

From the third equation, we can get an expression for E’:

E′ = γMv sin θe
c

sin θp
(20)

Now, substitute the expression for γ from the first equation into the expression for E’:

E′ =

(
E′ +Mc2 − E

mc

)
Mv sin θe

c

sin θp
(21)

Now, let’s use the second equation to eliminate γ Mv:

γMv cos θe =
E

c
− E′

c
cos θp (22)

Divide both sides by cos θe:

γMv =
E

c cos θe
− E′

c

cos θp
cos θe

(23)

Now, substitute this expression for γ Mv into the expression for E’:

E′ =

(
E′ +Mc2 − E

mc

)(
E

c cos θe
− E′

c

cos θp
cos θe

)
sin θe

c

sin θp
(24)

Simplify the equation:

E′ =
E′ +Mc2 − E

m

(
E

cos θe
− E′

cos θe
cos θp

)
sin θe

1

sin θp
(25)

Multiply both sides by sin θp:
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E′ sin θp =
E′ +Mc2 − E

m

(
E

cos θe
− E′

cos θe
cos θp

)
sin θe (26)

Now, expand the equation and rearrange the terms to isolate E’:

E′ sin θp =
E(E′ +Mc2 − E) sin θe

m cos θe
− E′2 sin θe cos θp

m cos θe
(27)

Now, factor out E’ from the right side:

E′ sin θp =
E′ sin θe
m cos θe

(E − E′ cos θp +Mc2) (28)

Now, divide both sides by sin θe/(msin cose):

E′ =
EMc2

E(1− cos θp) +Mc2
(29)

We have derived the expression for E’ in terms of E, M, c, and cos θp.To find the change in wavelength,
λ′ − λ, we will use the given expression:

λ′ − λ =
hc

E′ −
hc

E
(30)

We already derived the expression for E′:

E′ =
EMc2

E(1− cos θp) +Mc2
(31)

Now, let’s plug this expression for E′ into the change in wavelength equation:

λ′ − λ =
hc

EMc2

E(1−cos θp)+Mc2

− hc

E
(32)

To simplify, we can factor out hc:

λ′ − λ = hc

(
1

E′ −
1

E

)
(33)

Now, plug in the expression for E′ again:

λ′ − λ = hc

(
1

EMc2

E(1−cos θp)+Mc2

− 1

E

)
(34)

To simplify, let’s invert the fractions:

λ′ − λ = hc

(
E(1− cos θp) +Mc2

EMc2
− E

E

)
(35)

Now, let’s find a common denominator (EMc2):

λ′ − λ = hc

(
E2(1− cos θp) + EMc2

E2Mc2
− EMc2

E2Mc2

)
(36)

Now, subtract the fractions:
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λ′ − λ = hc

(
E2(1− cos θp) + EMc2 − EMc2

E2Mc2

)
(37)

Simplify the numerator:

λ′ − λ = hc

(
E2(1− cos θp)

E2Mc2

)
(38)

Now, cancel the E2 terms:

λ′ − λ =
hc(1− cos θp)

Mc2
(39)

This is the expression for the change in wavelength, λ′ − λ, in terms of h, c, M , and cos(θp).

This formula shows that the change in wavelength is proportional to the cosine of the electron scattering
angle and inversely proportional to the mass of the electron, and also depends on the cosine of the proton
scattering angle and inversely proportional to the energy of the incident photon. This formula agrees well
with experimental data and provides a more complete understanding of the scattering process.

4 Calculus of Variation

4.1 Newtonian potential

By the argument for the equivalence principle given in chapter 6 of Hartle, signals can have their rate affected
by a difference in potential according to:

rate at B =

(
1 +

ΦA − ΦB

c2

)
× rate at A (40)

To see this in application, let’s look at the geometry described by a small potential dependent in our line
element Φ(xi) for i = x, y, z

ds2 = −
(
1 +

2Φ

c2

)
(cdt)2 +

(
1− 2Φ

c2

)
(dx⃗ · dx⃗) (41)

dτ2 = −
(
1 +

2Φ

c2

)
dt2 +

1

c2

(
1− 2Φ

c2

)
(dx⃗ · dx⃗) (42)

for dx⃗ = dx⃗
dt dt = v⃗dt let’s compute the total proper time:

τAB =

∫ B

A

dτ (43)

=

∫ B

A

dt

√(
1 +

2Φ

c2

)
−
(
1− 2Φ

c2

)
v⃗ · v⃗
c2

(44)

Taylor expands this around the small-expression after the 1 + and drop all the second order terms and higher
power of c gives:

=

∫ B

A

dt

(
1 +

Φ

c2
− 1

2

v⃗ · v⃗
c2

)
(45)

extremize the proper time using Euler-Lagrange equation gives:

5



∂L

∂x⃗
=

∂

∂t

∂L

∂v⃗
(46)

=⇒ 1

c2
∇Φ− ∂

∂t

(
−v⃗

c2

)
= 0 (47)

∇Φ+
∂2x⃗

∂t2
= 0 (48)

which looks a lot like Newton’s second law, so we do recover classical mechanics for a small potential that
only depends on the position.

4.2 Principle of least action

Figure 1: q(λ) is the path that minimizes our action, the other path has a small deviation δq(λ)

Let’s look at the action functional I[q] that takes any parametrization of any path f(x) 7→ C through
the following map:

I[q] =

∫ B

A

dλ L(q, q̇) (49)

Suppose we have found a path q(λ) that minimizes the action, that path would satisfy the following condition:{
all small deviation δq should produce a vanishing first order in the action : I[q] = I[q + δq] + O(δq2)

the correction should vanish at the end points : δq(λa) = δq(λb) = 0
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Under these assumptions:

I[q + δq] =

∫ B

A

dλ L(q + δq, q̇ + δq̇) (50)

≈
∫ B

A

dλ L(q, q̇) + δq
∂L

∂q
+ δq̇

∂L

∂q̇
+ O(δq2) (51)

= I[q] +

∫ B

A

dλ δq
∂L

∂q
+

(
∂

∂λ

(
δq

∂L

∂q̇

)
− δq

∂

∂λ

(
∂L

∂q̇

))
(52)

= I[q] + δq
∂L

∂q̇

∣∣∣λb

λa

+

∫ B

A

dλ δq

(
∂L

∂q
− ∂

∂λ

(
∂L

∂q̇

))
(53)

∴
∂L

∂q
− ∂

∂λ

(
∂L

∂q̇

)
= 0 (54)

■

4.3 Shortest path around a sphere

For the polar line element ds2 = R2dθ2 +R2 sin θdϕ2 let’s find the shortest path around a sphere.
First, we can re-coordinatize in such a way that A, and B have the same latitude ϕA = ϕB and write ϕ

as a function of θ. We would then need to find a path ϕ(θ) to minimize sAB

Figure 2: Find the shortest Euclidean distance between A and B on the same latitude line

ds = Rdθ

√
1 + sin2 θ

(
dϕ

dθ

)2

(55)

sAB =

∫ B

A

ds =

∫ B

A

Rdθ

√
1 + sin2 θ

(
dϕ

dθ

)2

(56)

=

∫ B

A

Rdθ

√
1 + ϕ′2 sin2 θ (57)

(58)
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Notice that: ∂L
∂ϕ = 0 =⇒ ∂

∂θ

(
∂L
∂ϕ′

)
= 0, hence:

2Rϕ′2 sin2 θ

2
√

1 + ϕ′2 sin2 θ
= const. (59)

ϕ′2 sin2 θ√
1 + ϕ′2 sin2 θ

= C (60)

⇐⇒ ϕ′2 sin2 θ(sin2 θ − C2) = C2 (61)

=⇒ ϕ′(θ) = ± C

sin θ
√
sin2 θ − C2

(62)

SoV and Integrate with respect to θ yields the extremized condition:

cot θ =

√
1− C2

C
cos(ϕ− ϕo) (63)

an infant would then see that this is clearly Clairaut’s parametrization of a great circle. Therefore, the great
circle containing A and B contains both the shortest and the longest path between them

5 Equivalence Principle

The Equivalence Principle is an important idea in relativity regarding each independent observers ability to
view them self as “at rest.” This relies on the idea that to an observer, acceleration and the presence of a
gravitational field can be viewed interchangeably. For example, a person inside a closed box, dropped out
of an airplane, could fail to notice the existence of the earths gravitational field because their acceleration
from falling counteracts it. In a similar case, a student, studying in Cudahy library would not notice the
difference if they were teleported to an identical Cudahy library in space, that was on a rocket, with constant
acceleration equal to that of earth’s gravitational field.

6 Uniform Acceleration Problem

The problem

Imagine a traveler getting into a spaceship in order to travel to a distant star and then come back to Earth.
We assume that the position of the Earth is x0 = 0 and that the time the stationary observer experiences until
the astronaut reaches the midpoint of the distance to the star is t∗. (Let’s assume that there is a well defined
midpoint with some sort of physical landmark, so we avoid the whole length contraction shenanigans, as the
two observers will agree on the landmark). The astronaut is experiencing a constant proper acceleration, g,
and the observer measures the astronaut’s velocity,

v =
dx

dt
=

gt√
1 + ( gtc )

2
(64)

We divide the trip into four parts, from Earth to the midpoint to the star, the rest of the travel to the
star, the return trip up to the midpoint and from there back to Earth. In order for the astronaut to return
to Earth, we will assume that turning the rocket around happens instantaneously at the points where the
acceleration should change direction.
Find the acceleration function in the four parts and using that, find the velocity and position functions from
the point of view of the stationary observer on Earth.
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The solution

When we take the derivative of (1) with respect to dt, we have:

dx

dt
=

gt√
1 + ( gtc )

2
⇒

d2x

dt2
=

g√
1 + ( gtc )

2
+

−g3t2

c2(√
1 + ( gtc )

2
)3 ⇒

d2x

dt2
=

g√
1 + ( gtc )

2

(
1−

( gtc )
2

1 + ( gtc )
2

)
⇒

d2x

dt2
=

g(
1 + ( gtc )

2
)3/2 (65)

This is the equation for acceleration for the first quarter of the trip. When we look at how this is affected
when the astronaut needs to decelerate at t = t∗, we see that we have to make two changes. First, flip the
sign as the acceleration is now in the opposite direction. Then, because of the symmetry (look at the graph
of acceleration in the end) of the acceleration function, we need to do a translation in time, t → t − 2t∗.
Thus, for the first two quarters of the trip, the acceleration function looks like:

a1(t) =
g(

1 + ( gtc )
2
)3/2 , 0 ≤ t ≤ t∗ (66)

a2(t) =
−g(

1 +
( g(t−2t∗)

c

)2)3/2 , t∗ ≤ t ≤ 2t∗ (67)

By integrating the above function over dt, we get that the velocity for the first two quarters is:

v1(t) =
gt√

1 + ( gtc )
2
, 0 ≤ t ≤ t∗ (68)

v2(t) =
−g(t− 2t∗)√

1 + ( gtc )
2
+D, t∗ ≤ t ≤ 2t∗ (69)

In order to find the integration constant we have to consider the fact that v1(t∗) = v2(t∗), since the
velocity should be a continuous function.

By plugging in t = t∗ it is fairly trivial to see that D = 0.

In order to get the first two quarters’ position functions we need to integrate once more over dt, in which
case we get:

x1(t) =
c2

g

√
1 +

(gt
c

)2
− c2

g
, 0 ≤ t ≤ t∗ (70)

x2(t) = −c2

g

√√√√1 +

(
g(t− 2t∗)

c

)2

+ E, t∗ ≤ t ≤ 2t∗ (71)

In order to find the integration constant, E, we again need to consider that x1(t∗) = x2(t∗).

This gives us that : E = c2

g

(
2

√
1 +

(
gt∗
c

)2 − 1

)
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By plugging that in (63), we can see that:

x2(t) = −c2

g

√√√√1 +

(
g(t− 2t∗)

c

)2

+
c2

g

(
2

√
1 +

(gt∗
c

)2
− 1

)
(72)

In order to find the acceleration, velocity and position functions for the last two quarters of the trip, we
apply a similar analysis.

a3(t) =
−g(

1 +
( g(t−2t∗)

c

)2)3/2 , 2t∗ ≤ t ≤ 3t∗ (73)

a4(t) =
g(

1 +
( g(t−4t∗)

c

)2)3/2 , 3t∗ ≤ t ≤ 4t∗ (74)

It is expected that a2(t) = a3(t), since for that time period the deceleration turn into an acceleration
towards the opposite direction as soon as v = 0 at t = 2t∗.

v3(t) =
−g(t− 2t∗)√

1 + ( gtc )
2
, 2t∗ ≤ t ≤ 3t∗ (75)

v4(t) =
g(t− 4t∗)√

1 + ( g(t−4t∗)
c )2

, 3t∗ ≤ t ≤ 4t∗ (76)

Lastly, one more integration will give us the position functions:

x3(t) = −c2

g

√√√√1 +

(
g(t− 2t∗)

c

)2

− c2

g

(
2

√√√√1 +

(
gt

c

)2

− 1

)
(77)

x4(t) = −c2

g

√√√√1 +

(
g(t− 4t∗)

c

)2

+K (78)

We can find K by requiring that x3(3t∗) = x4(t∗).

Then, a straightforward calculation gives us K = − c2

g

(
− 2

√
1 +

(
gt∗
c

)2

+ 1

)
Thus,

x4(t) = −c2

g

√√√√1 +

(
g(t− 4t∗)

c

)2

− c2

g

(
− 2

√√√√1 +

(
gt∗
c

)2

+ 1

)
(79)

The graph below shows the acceleration function plotted in time, where the parameter t is equivalent to our
t∗.
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7 Another Uniform Acceleration Problem

Consider the transformations:

t =
( c
g
+

x′

c

)
sinh

(
gt′

c

)
x = c

( c
g
+

x′

c

)
cosh

(
gt′

c

)
− c2

g

y = y′, z = z′

Then, the line element, ds2 is given by:

ds2 = −c2dt2 + dx2 + dy2 + dz2 (80)

dt =
∂t

∂x′ dx
′ +

∂t

∂t′
dt′ =

1

c
sinh

(
gt′

c

)
dx′ +

g

c
(
c

g
+

x′

c
) cosh

(
gt′

c

)
dt′ ⇒

dt =
1

c
sinh

(
gt′

c

)
dx′ + (1 +

gx′

c2
) cosh

(
gt′

c

)
dt′ (81)

Similarly,

dx = cosh

(
gt′

c

)
dx′ + c(1 +

gx′

c2
) sinh

(
gt′

c

)
dt′ (82)

Then, the line element then (ignoring the dy, dz terms) reduces to:

ds2 = −c2

[
1

c2
sinh2

(gt′
c

)
dx′2 +

(
1 +

gx′

c2

)2
cosh2

(gt′
c

)
dt′2 +

2

c

(
1 +

gx′

c2

)
sinh

(gt′
c

)
cosh

(gt′
c

)
dx′dt′

]

+ cosh2
(gt′

c

)
dx′2 + c2

(
1 +

gx′

c2

)2
sinh2

(gt′
c

)
dt′2 − 2c

(
1 +

gx′

c2

)
sinh

(gt′
c

)
cosh

(gt′
c

)
dx′dt′

= − sinh2
(gt′

c

)
dx′2 − c2

(
1 +

gx′

c2

)
cosh2

(gt′
c

)
dt′2 + cosh2

(gt′
c

)
dx′2 + c2

(
1 +

gx′

c2

)2
sinh2

(gt′
c

)
dt′2

= −c2
(
1 +

gx′

c2

)2
dt′2 + dx′2

If we Taylor expand the transformations up to second order, we can see that they resemble Newtonian
Mechanics for acceleration equal to g.

cosh
(gt′

c

)
≈ 1 +

g2t′2

2c2
, sinh

(gt′
c

)
≈ gt′

c
(83)

And thus: t ≈ t′ and x ≈ x′ + 1
2gt

′2

Lastly, since the line element term of dx’ has no time dependence, we can conclude that, in time, the
height any object moving in a way that obeys the above transformation will remain the same, and thus the
body will be rigid.

8 Lorentz Transformations

8.1 4-Vectors

r⃗ → ri i = 1, 2, 3 r⃗ = (r1, r2, r3) (84)

A⃗ · B⃗ → AiBi =
∑
i

AiBi = A1B1 +A2B2 +A3B3 (85)

= AiB
i = (A1 A2 A3)

B1

B2

B3

 (86)

M j
i =

M1
1 M1

2 M1
3

M2
1 M2

2 M2
3

M3
1 M3

2 M3
3

 (87)
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Matrix mechanics follow as usual with this shorthand notation of upper and lower indices.
Using this 4-vector notation, we intoduce a position vector Xµ µ = 0, 1, 2, 3 Where

Xµ =


ct
x
y
z

 =

(
ct
r⃗

)
and ∆Xµ


c∆t
∆x
∆y
∆z

 =

(
c∆t
r⃗

)
(88)

To simplify calculations involving 4-vectors we introduce the Minkowski metric

ηµν =


−1

1
1

1

 (89)

With this useful tool,

(∆x)µ(∆)µ = (−c∆t,∆r⃗)

(
c∆t
∆r⃗

)
= ηµν(∆x)µ(∆x)ν (90)

8.2 Boosts, Rotations and and translations

In Relativity, there are 3 types of continuous symmetries that leave the line element, ∆s2, invariant.
First, we have the Lorentz boosts, which are described by the following equation:

x
′µ = Λµ

νx
ν (91)

where, for a boost in the x- direction:

Λµ
ν =


γ −γv

c2 0 0
−γv γ 0 0
0 0 1 0
0 0 0 0

 (92)

Second, we have spatial and time translations, which are simply described: r⃗ → r⃗ + a⃗ and t → t+ b
Lastly, we have the spatial rotations around x,y and z, which are described by the known rotation matrices.

9 Relativistic Formulation of Maxwell Equations

9.1 Sources of Electric and Magnetic Fields

Recall that Maxwell’s Equations relate the electric and magnetic fields to their sources (charge and current
density, respectively).

∇ · E⃗ =
ρ

ϵ0
(93)

∇ · B⃗ = 0 (94)

∇× E⃗ = −∂B⃗

∂t
(95)

∇× B⃗ = µ0J⃗ + µ0ϵ0
∂E⃗

∂t
(96)

These sources will change with reference frame, and as a result, we must construct a method that represents
the electric and magnetic fields while considering relativistic phenomena. We can begin by representing the
sources for these fields as a 4- vector:

Jµ =


cρ
Jx
Jy
Jz

 (97)
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0-th index is the charge density, and the remaining three are the three components of the current density. The
factor of c is added to maintain units. This four-vector is covariant, in that it transforms by the Minkowski
rank 0,2 tensor ηµν as follows (as seen in Eqn. 90):

JµJ
µ = ηµνJ

νJµ (98)

where ηµν is given in Eqn. 89.

The continuity equation ∂ρ
∂τ + ∇ · J⃗ = 0 can thus be rewritten using relativistic notation. Instead of a

derivative, we use a 4-vector differential operator that also behaves covariantly, ∂µ. It acts so that:

∂0 =
∂

∂x0
=

1

c

∂

∂t
(99)

∂i =
∂

∂xi
(100)

Thus

∂µJ
µ = ∂0J

0 + ∂1J
1 + ∂2J

2 + ∂3J
3 (101)

=
1

c

∂

∂t
(cρ) +

∂

∂x
(Jx) +

∂

∂y
(Jy) +

∂

∂z
(Jz) (102)

=
∂ρ

∂t
+∇ · J⃗ (103)

And so, the relativistic formulation of the continuity equation is ∂µJ
µ = 0. Conservation of charge.

9.2 Potential 4-Vectors

Now that we have a relativistic formulation of the sources for electric and magnetic fields, the next step is to
proceed to a formulation that relates these sources to the fields. However, E⃗ and B⃗ can’t be represented as
4-vectors themselves because they are three-dimensional vectors in classical physics. Instead, we will create
a 4-vector combining the electric potential Φ, a scalar, and the magnetic potential A⃗, a quantity that is a
vector in classical electrodynamics.

Aµ =

Φ

c

A⃗

 (104)

Then E⃗ and B⃗ become

E⃗ = −∇Φ− ∂A⃗

∂t
(105)

B⃗ = −∇× A⃗ (106)

As Φ and A⃗ are potentials, they are non-unique. In other words, the potentials can be shifted by a gauge
factor λ, and they will produce the same electric and magnetic fields.

A⃗ → A⃗+∇ · λ (107)

Φ → Φ+ ∂0λ (108)

We now have the framework necessary for a relativistic representation of E⃗ and B⃗ using tensors.

9.3 Maxwell Field Strength Tensor

As mentioned earlier, E⃗ and B⃗ are both vectors and thus have too much information to represent in a
4-vector. Instead, we will use the Maxwell Field Strength Tensor:

Fµν = ∂µAν − ∂νAµ (109)
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Note that, as it represents E⃗ and B⃗, Fµν doesn’t change with the choice of gauge.

∂µ∂νλ = ∂ν∂µλ (110)

F ′
µν = ∂µ(Aν + ∂νλ)− ∂ν(Aµ + ∂µλ)

= ∂µAν + ∂µ∂νλ− ∂νAµ − ∂ν∂µλ

= Fµν

Let us examine the tensor in more detail. First, this is an anti-symmetric rank 0,2 tensor. Anti-symmetric
means that Fµν = −Fνµ. Furthermore, when represented in matrix form, we can see that Fµν contains six

unique pieces of information - three for E⃗ and three for B⃗.
0 a b c

0 d e
0 f

0

 (111)

This is evident when we calculate individual components:

F01 =
1

c

∂Ax

∂t
− ∂

∂x

(
−Φ

c

)
=

1

c

(
∂Φ

∂t
+

∂Ax

∂t

)
= −Ex

c
(112)

F12 =
∂Ay

∂x
− ∂Ax

∂y
= (∇× A⃗)z = Bz (113)

Where εijk is the The components of E⃗ and B⃗ are thus represented as follows:

F0i = −Ei

c
(114)

Fij = εijkBk (115)

We can move the indices up, resulting in:

F 0i =
Ei

c
(116)

F ij = εijkBk (117)

9.4 Maxwell’s Equations

Two of Maxwell’s Equations imply the existence of potentials for the fields:

∇× E⃗ = 0 ⇒ ∇Φ = E⃗ (118)

∇ · B⃗ = 0 ⇒ ∇× A⃗ = B⃗ (119)

So, we have two remaining Maxwell Equations to recover: ∇· E⃗ and ∇× B⃗. To do this, we will look at the
derivatives of E⃗ and B⃗, which should be related to the sources, which live in the 4-vector Aµ, by applying the
4-vector differential operator ∂µ to the Maxwell Field Strength Tensor Fµν . We can use split the differential
operator into two parts”

∂µF
µν = ∂0F

0ν + ∂iF
iν (120)

We can apply it to ν = 0:

∂µF
µ0 = ∂0F

00 + ∂iF
i0 (121)

= −1

c
∂iE

i (122)

= −1

c

(
∇ · E⃗

)
(123)

= −1

c

ρ

ϵ0
(124)

= −µ0J
0 (125)
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This is the relativistic formulation of Coulomb’s law. To get the other formulation, we look at ν = i for
i = 1, 2, 3 as is convention.

∂µF
µi = ∂0F

0i + ∂jF
ji (126)

=
1

c

∂

∂t

(
1

c
Ei

)
+ ∂j(ε

ijkBk) (127)

=
1

c2
∂Ei

∂t
− εijk∂jB

k (128)

=
1

c2
∂Ei

∂t
− (∇× B⃗)i (129)

= −µiJ
i (130)

Thus the Maxwell’s Equations can be rewritten using relativistic notation as:

∂µF
µν = −µ0J

ν (131)

(132)

15


